THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5000 Analysis I 2015-2016
Problem Set 1: Preliminaries

1. Show that if $f: A \rightarrow B$ and E, F are subsets of A, then $f(E \cup F)=f(E) \cup f(F)$ and $f(E \cap F) \subseteq$ $f(E) \cap f(F)$.
2. Show that if $f: A \rightarrow B$ and G, H are subsets of B, then $f^{-1}(G \cup H)=f^{-1}(G) \cup f^{-1}(H)$ and $f^{-1}(G \cap H)=f^{-1}(G) \cap f^{-1}(H)$.
3. (a) Show that if $f: A \rightarrow B$ is injective and $E \subseteq A$, then $f^{-1}(f(E))=E$. Give an example to show that equality need not hold if f is not injective.
(b) Show that if $f: A \rightarrow B$ is surjective and $H \subseteq B$, then $f\left(f^{-1}(H)\right)=H$. Give an example to show that equality need not hold if f is not surjective.
4. (a) Suppose that f is an injection. Show that $f^{-1} \circ f(x)=x$ for all $x \in D(f)$ and that $f \circ f^{-1}(y)=y$ for all $y \in R(f)$.
(b) If f is a bijection of A onto B, show that f^{-1} is a bijection of B onto A.
5. Prove that if $f: A \rightarrow B$ is bijective and $g: B \rightarrow C$ is bijective, then the composite $g \circ f$ is a bijective map of A onto C.
6. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions.
(a) Show that if $g \circ f$ is injective, then f is injective.
(b) Show that if $g \circ f$ is surjective, then g is surjective.
7. Let f, g be functions such that $(g \circ f)(x)=x$ for all $x \in D(f)$ and $(f \circ g)(y)=y$ for all $y \in D(g)$. Prove that $g=f^{-1}$.
8. Prove that $\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{n}}>\sqrt{n}$ for all $n \in \mathbb{N}$
9. Prove the second version of Principle of Mathematical Induction:

Let $n_{0} \in \mathbb{N}$ and let $P(n)$ be a statement for each natural number $n \geq n_{0}$. Suppose that

- The statement $P\left(n_{0}\right)$ is true.
- For all $k \geq n_{0}$, the truth of $P(k)$ implies the truth of $P(k+1)$.

Then $P(n)$ is true for all $n \geq n_{0}$.
10. Prove the strong version of Principle of Mathematical Induction:

Let S be a subset of \mathbb{N} such that

- $1 \in S$.
- For every $k \in \mathbb{N}$, if $\{1,2, \cdots, k\} \subseteq S$, then $k+1 \in S$.

Then $S=\mathbb{N}$.
11. Prove a variation of Principle of Mathematical Induction:

Let S be a subset of \mathbb{N} such that

- $2^{k} \in S$ for all $k \in \mathbb{N}$.
- If $k \in S$ and $k \geq 2$, then $k-1 \in S$.

Then $S=\mathbb{N}$.
12. Show that the set $S=\{n \in \mathbb{N}: n \geq 2015\}$ is countably infinite.
13. Prove that if S and T are countably infinite, then $S \cup T$ is countably infinite.
14. Prove that if S is countably infinite and T is finite, then S / T is countably infinite.
15. Suppose that $f: S \rightarrow T$ is an injective function, where S is an infinite set. Prove that T is an infinite set.
16. Suppose that $f: S \rightarrow T$ is an surjective function, where T is a countably infinite set. Is S an infinite set? Why?
17. Let S be a set. $\mathcal{P}(S)$ is defined to be the collection of all subsets of S.
(a) Write down $\mathcal{P}(S)$ explicitly if $S=\{1,2,3\}$. How many elements does $\mathcal{P}(S)$ contain?
(b) Use mathematical induction to prove that if the set S has n elements, then $\mathcal{P}(S)$ has 2^{n} elements.

