THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5000 Analysis I 2015-2016 Problem Set 1: Preliminaries

- 1. Show that if $f : A \to B$ and E, F are subsets of A, then $f(E \cup F) = f(E) \cup f(F)$ and $f(E \cap F) \subseteq f(E) \cap f(F)$.
- 2. Show that if $f : A \to B$ and G, H are subsets of B, then $f^{-1}(G \cup H) = f^{-1}(G) \cup f^{-1}(H)$ and $f^{-1}(G \cap H) = f^{-1}(G) \cap f^{-1}(H)$.
- 3. (a) Show that if $f : A \to B$ is injective and $E \subseteq A$, then $f^{-1}(f(E)) = E$. Give an example to show that equality need not hold if f is not injective.
 - (b) Show that if $f : A \to B$ is surjective and $H \subseteq B$, then $f(f^{-1}(H)) = H$. Give an example to show that equality need not hold if f is not surjective.
- 4. (a) Suppose that f is an injection. Show that $f^{-1} \circ f(x) = x$ for all $x \in D(f)$ and that $f \circ f^{-1}(y) = y$ for all $y \in R(f)$.
 - (b) If f is a bijection of A onto B, show that f^{-1} is a bijection of B onto A.
- 5. Prove that if $f : A \to B$ is bijective and $g : B \to C$ is bijective, then the composite $g \circ f$ is a bijective map of A onto C.
- 6. Let $f: A \to B$ and $g: B \to C$ be functions.
 - (a) Show that if $g \circ f$ is injective, then f is injective.
 - (b) Show that if $g \circ f$ is surjective, then g is surjective.
- 7. Let f, g be functions such that $(g \circ f)(x) = x$ for all $x \in D(f)$ and $(f \circ g)(y) = y$ for all $y \in D(g)$. Prove that $g = f^{-1}$.
- 8. Prove that $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} > \sqrt{n}$ for all $n \in \mathbb{N}$
- 9. Prove the second version of Principle of Mathematical Induction: Let $n_0 \in \mathbb{N}$ and let P(n) be a statement for each natural number $n \ge n_0$. Suppose that
 - The statement $P(n_0)$ is true.
 - For all $k \ge n_0$, the truth of P(k) implies the truth of P(k+1).

Then P(n) is true for all $n \ge n_0$.

- 10. Prove the strong version of Principle of Mathematical Induction: Let S be a subset of \mathbb{N} such that
 - $1 \in S$.
 - For every $k \in \mathbb{N}$, if $\{1, 2, \dots, k\} \subseteq S$, then $k + 1 \in S$.

Then $S = \mathbb{N}$.

11. Prove a variation of Principle of Mathematical Induction:

Let S be a subset of $\mathbb N$ such that

- $2^k \in S$ for all $k \in \mathbb{N}$.
- If $k \in S$ and $k \ge 2$, then $k 1 \in S$.

Then $S = \mathbb{N}$.

- 12. Show that the set $S = \{n \in \mathbb{N} : n \ge 2015\}$ is countably infinite.
- 13. Prove that if S and T are countably infinite, then $S \cup T$ is countably infinite.
- 14. Prove that if S is countably infinite and T is finite, then S/T is countably infinite.
- 15. Suppose that $f: S \to T$ is an injective function, where S is an infinite set. Prove that T is an infinite set.
- 16. Suppose that $f: S \to T$ is an surjective function, where T is a countably infinite set. Is S an infinite set? Why?
- 17. Let S be a set. $\mathcal{P}(S)$ is defined to be the collection of all subsets of S.
 - (a) Write down $\mathcal{P}(S)$ explicitly if $S = \{1, 2, 3\}$. How many elements does $\mathcal{P}(S)$ contain?
 - (b) Use mathematical induction to prove that if the set S has n elements, then $\mathcal{P}(S)$ has 2^n elements.